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Calculation of ladder diagrams in arbitrary order 

V V Belokurov and N 1 Ussyukina 
Institute of Nuclear Physics, Moscow State University, Moscow 117234, USSR 

Received 17 January 1983 

Abstract. A scalar ladder propagator-type diagram is rigorously calculated in an arbitrary 
order of perturbation theory. 

Much attention has been given recently to calculating multiloop Feynman diagrams. 
It is stimulated by the efforts to make predictions of QCD more precise as well as by 
a deeper analysis of the structure of perturbation series in quantum field theory and 
attempts to sum it up. 

Several methods making possible the calculation of the renormalisation group (RG) 
quantities up to the three- or four-loop level have been developed (Celmaster and 
Gonsalves 1980, Chetyrkin et a1 1980, Chetyrkin and Tkachov 1981, Curtright 1980, 
Vassiliev er a1 1981). At the same time, attempts at further progress meet with 
serious difficulties. Here we present some simple arguments essentially enlarging the 
arsenal of methods for calculating Feynman diagrams. 

Let us consider diagrams in cp3-theory, as it is calculation of scalar integrals that 
is most difficult within this problem. We consider massless diagrams. There is a 
twofold reason for that. First, a power-like behaviour of the massless propagator 
both in momentum and coordinate spaces simplifies all the formulae greatly. Secondly, 
the massless propagator-type diagrams play a particular role in calculations of RG 
functions (see below). 

Not to complicate the formulae, we omit henceforth the factors that are powers 
of 2, T, i. These factors can be easily restored in the final results. 

We do the calculating in coordinate space. Each line of a diagram (m = 0) carries 
a power-like factor l / ( x z  - io)", that is pictured as a . 

The product and the convolution of lines in coordinate spaces are 

D being the space-time dimension. 
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If I; ai = D, a three-line vertex is proportional to a triangle (D'Eramo et a1 1971) 

= fi W / 2 - a l )  
r(a,)  

(Note that incidentally X bi = D/2 . )  The three-line vertex and the triangle which have 
such lines are called unique. 

If a diagram contains a unique vertex or a unique triangle, its calculation is greatly 
simplified. Unfortunately, every line of a diagram is usually like 1 + a  , a being 
a parameter of some regularisation. 

In that case the following identities are of use (Ussyukina 1983): 

Let us apply these identities to calculate multiloop diagrams. Propagator-type 
diagrams are of special interest because of the following remarkable fact: the problem 
of calculating the counterterm of an arbitrary L-loop diagram with arbitrary masses 
and an arbitrary number of external momenta within the MS (minimal subtraction see 
't Hooft (1973)) scheme can be reduced to the problem of calculating to O(E')  some 
(L  - 1)-loop massless integrals with only one external momentum (Vladimirov 1980, 
Chetyrkin et a1 1980). 
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Let us consider a scalar N-loop ladder diagram of propagator type, pictured in 
figure l ( a )  (D = 4). This is a convergent diagram. Denote it as @.N. To calculate 
cDN, it is convenient to use an auxiliary regularisation: Q N ( a l ,  az, a3) (see figure l (b) ) ,  
aN = @ N ( O ,  0,O). Let the parameters obey the condition 

a1+a2+a3=O. ( 5 )  

Figure 1. ( a )  Scalar N-loop propagator-type ladder diagram (aN). ( b )  Special analytic 
regularisation of diagram of ( a )  ( Q N ( a l ,  a2, (13)). 

A simple recurrence relation relating @ " ( a ~ ,  a2,  a 3 )  to @ N - I ( ~ I ,  a2, a3) is proved 
to exist: 

To prove this equation, consider a graph shown in figure 2. With the help of 
(1)-(5) this graph can be reduced to the linear combination of graphs ( a ) - ( c )  of figure 
3 with coefficients Y / a l f f 3 ,  Y/c~2~3, l / a l a z .  Equation (6 )  follows readily from that 
reduction. 

Figure 2. Ladder vertex graph that is used to prove ( 6 )  
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Figure 3. Graphs obtained from that of figure 2 
Q? 

( C  I after the reduction. 

To calculate Q2(a 1, a2,  a3) consider the diagram shown in figure 4. Let D = 4 - 2~ 
for the time being. This diagram can be calculated using (2)-(4) and in the limit E + 0 
yields 

@2(Q1,  Q2,  Q3) = - 
l - Q 3  r 

----{a1[Y(l +Ql)+*(I -ad1 
a l f f 2 a 3  

+a2[Y(1 + a z )  +W1- a2)]+a3[Y(1 +a3) + q ( l -  Q~)]}.  (7) 

As the three Q obey equation (5) '  it is convenient to rewrite (7) in the form 

1-a3 9 
@ 2 ( Q l ,  Q2,  Q 3 )  = - an(a:"+3 + a ; n + 3  +Q:"+3) 

a 1 a 2 a 3  n = O  

n !  cl: = 12n+2) a, 2Y (1)/(2n + 2)! = -2[(2n + 3), k ! ( n  - k ) ! '  

An expression for @ 3 ( a 1 ,  a2,  a 3 )  can be obtained in a way similar to that of equation 
(6 ) .  The result is 
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The last term corresponds to the diagram shown in figure 5 .  

Figure 4. Two-loop propagator-type diagram Figure 5. Graph corresponding to the last term in 
(Qz(a1, a21 as)). (9) .  

On account of (8), equation (9) leads to 

Now from (6) we can obtain an expression for QN(al ,  a2,  a3) for all N. It has the 
form 

k - N + 1  Z n + 3 - k - ( N - l )  
k a 2  

2 n + 3 - ( N - l )  

n = N - 2  k = N - l  a1 +a2 

The proof of (11) can be done easily by induction. When all a tend to zero, only the 
term with n = N - 2 is essential in this sum: 

Thus 

The above calculation seems to be the first example of calculations of non-trivial 
diagrams in an arbitrary order. We stress that no additional assumption is used here. 

The method described can be used to calculate divergent diagrams as well. The 
divergences will manifest themselves as poles in the regularisation parameters (Speer 
1968). 
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